跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
112
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
國立臺灣大學
申請系所
環境工程學研究所
專案主持人
席行正
職等/職稱
教授
專案中文名稱
從人體健康風險角度評估以改質銀合歡生物炭作為控制土壤重金屬釋出與被利用之新穎材料研究
中文關鍵字
土壤, 多重重金屬, 甲基汞, NH4P銀合歡改質生物炭, 可利用性養分, 人體健康風險評估, 綠色整治, 氣候變遷調適
專案英文名稱
Application of Leucaena leucocephala modified biochar as a novel material for controlling the release and exposure of heavy metals in soil: From human health risk perspective
英文關鍵字
soil, multiple heavy metal, Methyl mercury, NH4P Leucaena leucocephala biochar, available nutrients, human health risk, green remediation, climate change adaptation
執行金額
1,061,000元
執行期間
2024/1/1
至
2024/12/31
計畫中文摘要
受重金屬污染的農地土壤因其對糧食安全、環境和人類健康的有害風險而受到廣泛關注。此外,氣候變遷亦改變了重金屬在土壤中的傳輸和移動性,限制了土壤生產力、營養元素的植物和生物可利用率,進而增加了健康風險。為了減輕上述風險,利用微型和盆栽試驗來評估施加未改質生物炭(biochar , BC)與磷酸銨改質生物炭(ammonium phosphate impregnated biochar, NPBC)後,對土壤中重金屬固定化、可利用性養分提升、二氧化碳捕捉與農民、孩童與成人健康風險降低之效果。本研究旨在透過材料合成以及微型和盆栽實驗,用以調查使用生物炭作為多種環境和氣候挑戰下新解決方案的影響。 由材料物化特性分析結果,顯示氮和磷之含浸使得NPBC900的表面積和孔體積分別增加至500 m2/g和0.204 m3/g,而含氮和磷酸化官能基的含量(如:PO4-、吡啶-N、胺、吡咯-N、石墨-C、C-NH2+ 和氧化-N)也增加,此與預期之結果一致。此外,元素分析結果顯示氮、磷和氧含量分別從0.47%、0.25%和9%增加到3.01%、4.7%和21.4%。有趣的是,含浸物質在生物炭表面的保留程度(穩定性)也讓我們發現高溫合成之 NPBC 的「緩釋」特性,僅約8%的總磷被釋放到液相中。 由微型試驗結果,發現生物炭具有可提供蔬菜生物可利用之營養鹽的能力。具體來說,與控制組相比,經生物炭處理的土壤中鉀和磷含量分別提高了2.5倍和3倍,證實生物炭之應用可作為低營養鹽地區氣候調適之策略。研究結果亦顯示,NPBC具有固定化土壤中重金屬之卓越能力,其可顯著降低高生物可利用之重金屬含量,舉例來說,施加NPBC900 於土壤中可讓 As、Cd、Cr、Cu、Ni、Pb、Zn和Hg 的殘餘相分別提高25.5%、7.4%、25.6%、59.3%、14.1%、105.7%、61.6%和47.3%,使得重金屬轉移至更穩定的相態。此外,經生物炭處理的土壤在人體胃腸道可被生物利用的重金屬含量亦顯著降低(約90%)。 由盆栽實驗結果顯示,與控制組相比,NPBC900 具卓越的重金屬固定化能力,其能降低小白菜(Brassica rapa chinensis)從土壤中分別吸收81%, 81%, 92%, 92%, 43%, 70%, 94% 和 65%的As、Cd、Cr、Cu、Ni、Pb、Zn 和 Hg。此外,農民的健康風險亦顯著下降,非致癌和致癌風險分別降低55%和76%,暴露途徑的貢獻排序如下:飲食攝取 > 皮膚接觸 > 土壤攝取。此外,與控制組相比,一般大眾經飲食攝取途徑所暴露之非風險與致癌風險則分別降低約84%和91%。 由碳封存實驗結果顯示,與控制組相比,經NPBC700處理後土壤的碳含量增加了44.3%。本研究亦發現NPBC具有多重功能,其可作為傳統去除重金屬所使用吸附劑之實用且永續的替代品,它不僅能解決氣候變遷對農地的影響,也可作為一種適用於已開發和發展中國家的綠色永續整治技術。
計畫英文摘要
Heavy metals (HMs) contaminated agricultural soil have received wide attention because of the adverse risks posed to food security and environmental and human health. In addition, climate change altered the transmission and mobility of HMs in the soil, limiting soil productivity and nutrients phyto- and bio-availability, hence elevating health risks. In order to mitigate the aforementioned risks, an incubation and pot experiment will be employed to showcase the impacts of biochar without any modification (BC), and ammonium phosphate impregnated biochar (NPBC) on the HMs immobilization, nutrients addition, carbon reduction, and decrease farmers and general public human health risk. This project purposed to accomplish material synthesis, microcosm and / pot experiments in order to investigate the impact of using biochar as a novel solution to multiple environmental and climatic challenges. Results showed that nitrogen and phosphorous impregnation increased the surface area and pore volume up to 500 m2/g and 0.204 m3/g for NPBC900, respectively. Unsurprisingly, nitrogenous and phosphorylated function groups such as PO4-, pyridinic-N, amine, pyrrolic-N, graphitic-C, and C-NH2+ and oxidized-N were enhanced. Moreover, elemental analysis proved an increase of nitrogen, phosphorus, and oxygen from 0.47%, 0.25% and 9% to 3.01%, 4.7% and 21.4%, respectively. Interestingly, the extent to which impregnated species hold onto biochar surface (stability) aided to discovering the “slow releasing” character of the NPBC synthesized at high temperature, whereby 8% of total phosphorus was released into the liquid phase. Microcosm experiments showcased the inherent capacity for biochar to contribute the nutrients bioavailable fractions to vegetables. Specifically, compared to the control group, biochar amendment reported up to 2.5 and 3-fold elevated potassium and phosphorus content respectively confirming applicability in low nutrients regions as a climate adaption strategy. Additionally, findings demonstrated the superior effectiveness of NPBC to immobilize heavy metals through significant drops of highly available HMs fractions. For example, NPBC900 treatment enhanced residual phase for As, Cd, Cr, Cu, Ni, Pb, Zn, and Hg by 25.5%, 7.4%, 25.6%, 59.3%, 14.1%, 105.7%, 61.6%, and 47.3%, respectively, hence shifting heavy metals to more stable fractions. Moreover, a remarkable decrease (~ 90%) in human gastrointestinal bioaccessible heavy metals fraction was reported in biochar amended soil. Pot experiments with NPBC900 demonstrated remarkable heavy metals immobilization capacity by limiting uptake to Brassica rapa chinensis by 81%, 92%, 92%, 43%, 70%, 94%, 65%, and 81%, of As, Cd, Cr, Cu, Ni, Pb, Zn, and Hg, respectively compared to the control group. Also, remarkable health risk reduction was achieved for farmers, where both non-carcinogenic and carcinogenic risks were reduced by 55% and 76%, respectively. Exposure pathway contribution followed the sequence: dietary intake > dermal contact > soil ingestion. Moreover, compared to control, general public health risk was reduced by 84% and 91% for non-cancer and cancer risk under the dietary intake pathway. Also, the carbon sequestration experiment has revealed a 44.3% carbon content increase in NPBC700 biochar treatment compared to the control group. With multifaceted capabilities, NPBC emerges as a practical and sustainable alternative to conventional adsorbents in heavy metals removal technologies. It not only addresses the impact of climate change on agricultural farmland but also presents a green and sustainable remediation technology applicable in both developed and developing countries.