跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
112
專案性質
實驗性質
專案類別
模場試驗
研究主題
整治
申請機構
工業技術研究院
申請系所
綠能與環境研究所
專案主持人
卓坤慶
職等/職稱
研究員
專案中文名稱
智能化監測分析及注藥技術提升生物厭氧脫氯 整治工法之研究-地下水現地模場試驗
中文關鍵字
三氯乙烯, 生物整治, 量子串連雷射,智能化生物整治系統
專案英文名稱
Development and Application of Intelligent Bioremediation Approaches for Chlorinated-solvent Contaminated Groundwater Sites
英文關鍵字
Trichloroethylene, Bioremediation, Quantum Cascade lasers,Intelligent bioremediation system,
執行金額
執行期間
2023/9/1
至
2024/8/31
計畫中文摘要
本計畫主要研究動機為掌握現地水質及含氯污染物變化趨勢,透過搭配連續水質監測及光學分析設備監測,將監測變化趨勢數據,做為調整現場執行加藥量或菌群調控的參考指標,維持生物厭氧脫氯作用環境穩定。藉由穩定操作過程,可避免過度添加營養基質的情況以及產生生物遲滯作用,導致降解副產物累積的狀況產生,大幅提高生物工法執行效率。本計畫測試研發光學監測含氯污染物及自動化注藥技術,可減少過往採樣分析耗時費力的過程,結合遠端監控概念,有助於環境碳足跡減量,達到減碳效益及綠色整治目標。 第一年計畫已完成含氯污染物光學監測分析功能,於實驗室尺度下完成光學分析目標化合物(三氯乙烯、順-1,2-二氯乙烯、氯乙烯、乙烯)標準圖譜建立,說明光學儀器具分析三氯乙烯及其降解產物(順-1,2-二氯乙烯、氯乙烯、乙烯)之能力。且建立光學分析水體含氯有機污染濃度光學分析方法。此外,現場已建立測點IW9(監測井)與MW16(加藥井),將操作模場內連續式自動加藥設備與水質監測設備,定期收集水質參數變化,作為加藥模式訓練所需資料。 第二年計畫主要工項完成分為兩部分:(1)含氯有機物及其降解產物光學分析方法建立,針對混合有機物(液體)分離成效不彰之情況,加裝前處理裝置Micro-GC分析三氯乙烯及其降解產物(順-1,2-二氯乙烯、氯乙烯)之混合有機物及最低點濃度測試,證實使用Micro-GC在低濃度(0.05 mg/L)混合有機物條件下,具備分離辨識能力,且氯乙烯可分析濃度降至0.01 mg/L,以符合法規規範;(2)模場試驗多井位水質監測及加藥控制試驗中將單井位水質即時監控平台擴展為多井位水質監測,可由長期操作參數並持續測試自動化加藥模式與監測系統,並驗證與判斷加藥模式演算法模型之可行性。驗證期程分為背景資料收集 (113.4.18-113.5.10)、初次加藥啟動(113.5.11-113.5.20)、二次加藥啟動(113.5.21-113.6.7)與加藥停止後對下游井MW14水質參數影響(113.6.7-113.6.25),顯示加藥系統對MW14之pH有明顯變化。在加藥啟動過程中可維持監測期程內之多數pH值(50-70%)符合設定範圍(5.5-8.5)。而在未啟動加藥時(包含背景資料收集與加藥停止階段),pH值僅30-40%符合設定範圍。說明此加藥模式演算法模型具穩定水質參數之功能。 透過成本效益分析比較現有灌注設備與自動加藥模型,證實自動加藥模型在成本效益有更好的潛力。智能化加藥系統在營養基質用量、運輸成本碳排量、勞力成本、整治時間上有呈現顯著優勢,成長幅度為25至62.5%。然而,相較於現有灌注設備,智能化加藥系統的能源消耗與設備維運成本增加等劣勢,增加了50-65%消耗。因此未來建議可使用節能設備等措施,減少能源消耗,提升系統的可持續性。
計畫英文摘要
An intelligent bioremediation system was examined to achieve low-cost, high-efficiency and sustainable development to solve groundwater chlorinated contamination problems. The project aims to develop optical monitoring of chlorinated pollutants and intelligent bioremediation system, which reduces the time and labor effort previously required for sampling and analysis. The primary objective of this research is to understand the temporal variations in on-site groundwater quality on chlorinated contaminated site under bioremediation procedure. This study utilizes continuous groundwater quality monitoring and optical analysis equipment to collect data of these changing trends. The monitored data will serve as reference indicators for adjusting the dosage of nutrient amendment in order to maintain a stable environment for biological anaerobic dichlorination processes. By ensuring a stable operational process, it avoids excessive addition of nutrient substrates and the occurrence of biological lag effects, which can lead to the accumulation of degradation by-products, such as cis-DCE and vinyl chlorine(VC). This significantly improves the efficiency of implementing biological treatment methods. By incorporating the concept of remote monitoring, it also contributes to reducing environmental carbon footprints, achieving carbon reduction benefits, and promoting green remediation objectives. The main projects will focus on two parts: (1) Establishment of optical analysis methods for chlorinated contamination: In response to ineffective separation of mixed VOCs (liquids phase of TCE and its degradation products cis-DCE and VC), a pre-treatment device, Micro-GC, was installed to analyze the VOCs, including testing at the lowest concentrations (0.05 mg/L). It has been confirmed that Micro-GC can separate and identify mixed VOCs at 0.05 mg/L, with the detectable concentration of VC reduced 0.01 mg/L. (2)Establishment of Multiple well water quality monitoring and drug injection system: Through continuous operating parameters and automated injection system will be test and assess the feasibility of the model. The verification period is divided into four stages : Background data collection (2024/4/18-2024/5/10)、first injection system start (2024/5/11-2024/5/20)、second injection system start (2024/5/21-2024/6/7) and analysis of the water quality parameters of the downstream well MW14 after the injection system stop (2024/6/7-2024/6/25). It shows that during the injection system start-up process, 50-70% of the MW14 pH values during the monitoring period can be maintained within the pH range (5.5-8.5). When injection is not run(including Background data collection and injection system stop stages), only 30-40% of the pH values fall can be maintained within the pH range. It shows that this injecting model has the capability to stabilize water quality parameters. Through a cost-benefit analysis comparing existing injection system with an automated injecting model, it has been confirmed that the automated injecting model has greater potential for cost-effectiveness. The automated injecting model shows significant advantages in substrate usage、Transport costs、carbon emissions、labor cost、remediation time, with growth rates ranging from 25% to 62.5%. However, the automated injecting model experiences increased energy consumption and equipment, cost, rising by approximately 50% to 65%. Therefore, it is recommended to utilize renewable energy and energy-efficient equipment in the future to reduce energy consumption and enhance the sustainability of the system.