跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
111
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
淡江大學學校財團法人淡江大學
申請系所
水資源及環境工程學系
專案主持人
簡義杰
職等/職稱
助理教授
專案中文名稱
地下水中二氯乙烯好氧生物分解技術開發-氯烯類污染物生物降解路徑探究
中文關鍵字
二氯乙烯, 好氧生物分解
專案英文名稱
Developing the aerobic biodegradation technique for dichloroethe in groundwater - studying the biodegradation pathways of chlorinated ethenes
英文關鍵字
dichloroethe, aerobic biodegradation
執行金額
780,000元
執行期間
2022/6/1
至
2023/5/31
計畫中文摘要
受四氯乙烯(tetrachloroethylene,PCE)及三氯乙烯(trichloroethylene,TCE)污染的場址中,常發現PCE與TCE代謝不完全,導致中間產物順式-1,2-二氯乙烯(cDCE)的累積,cDCE揮發性高、移動性強,甚至可傳輸至地表,對周遭居民與環境存在高度風險。為了解決cDCE在地下水中累積的問題,及在近年來研究偵測到地下水中存在生物好氧反應基因及活性的背景下,此計畫針對PCE及TCE的主要代謝中間產物─cDCE進行好氧生物降解技術的開發,目的為探討此技術分解cDCE的效能,及其在現行生物降解路徑上的可能使用時機及適用條件。本計畫中使用篩菌實驗篩選本土污染場址的好氧cDCE分解菌,並以批次實驗調查能好氧代謝cDCE的Polaromonas sp. JS666菌株的降解能力,也針對JS666建立即時聚合酶連鎖反應(qPCR)偵測方法,最後將JS666應用於模擬地下水管柱系統,評估JS666與Dehalococcoides菌群及Geobacter loeleyi代謝路徑組合處理PCE及TCE之成效。 本計畫共進行三次的篩菌實驗,在觀測的時間(100-200天)內,均未發現好氧直接代謝cDCE細菌的跡象,由此可知能好氧代謝cDCE的細菌,並非廣泛地存在於污染場址中,若從另一個角度來看,已知能好氧代謝cDCE的JS666,以生物添加應用在實際污染場址的潛力應該相當高。JS666在批次降解實驗中,依菌種的濃度不同,可在2天-11天內將0.5 mM的cDCE分解至低於第二類地下水cDCE的管制標準。針對Polaromonas sp. JS666菌株的即時聚合酶連鎖反應(qPCR)偵測方法已成功地建立,且偵測方法之檢量線及專一性測試結果優異。模擬地下水管柱系統實驗已架設三組管柱系統,並已完成微生物植種,目前正在調控管柱環境條件階段,監測項目包含氧化還原電位、pH、溶氧及多氯烯類化合物。目前對JS666的一些基本生長特性仍未完全瞭解,未來若能持續探討及馴化菌株,未來將有助於應用在實際污染場址中。
計畫英文摘要
In polluted sites where groundwater contaminated by tetrachlorethylene (PCE) and trichlorethylene (TCE), incomplete degradation of PCE and TCE and the accumulation of intermediate products including cis-1,2-dichloroethene (cDCE) is often observed. cDCE has high volatility and strong mobility, thus, it may easily migrate to the surface, which poses a high risk to the surrounding residents and the environment. In order to solve the problem of cDCE accumulation, combined with the detection of aerobic genes and their activities in groundwater reported in recent years, this project aims to develop aerobic biodegradation techniques targeting the main metabolic intermediates, cDCE. The purpose is to evaluate the efficiency of this technology in terms of cDCE degradation, and to explore the conditions suitable for the integration of this technique into currently used biodegradation pathways. In this study, the screening experiment was used to isolate local bacteria that are capable of aerobically degrading cDCE. Batch degradation experiments were conducted to evaluate the degrading efficiency of Polaromonas sp. JS666. To monitor the number of JS666, quantitative polymerase chain reaction (qPCR) method was established. Finally, JS666 was applied in groundwater-simulating column systems to evaluate the efficiency of PCE and TCE removal when JS666 cooperated with either Dehalococcoides consortium or Geobacter loeleyi. A total of three bacterial screening experiments were conducted in this research project. During the observation period (100-200 days), no signs of aerobic metabolic degradating bacteria of cDCE were found. It implies that bacteria that can aerobically metabolize cDCE are not widely present in contaminated sites. From another perspective, Polaromonas sp. JS666, capable of aerobically metabolizing cDCE, has a very high potential for application in actual contaminated sites through bioaugmentation. In batch degradation experiments, JS666 can remove 0.5 mM cDCE to a level lower than the second-category groundwater cDCE regulatory standard within 2 to 11 days, depending on the concentration of the bacteria applied. A real-time polymerase chain reaction (qPCR) method for JS666 has been successfully established. Results showed that the method has excellent regression curve and is JS666 specific. Three column systems have been set up for the groundwater simulation experiment. The selected microorganism or microbial community has been inoculated. The environmental conditions such as oxidation-reduction potential, pH, dissolved oxygen and chlorinated ethenes in the columns are currently being adjusted. At present, the fundamental growth characteristics of JS666 are not fully understood. Future research on this topic will be helpful for the field application of JS666 in real pollution sites.