跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
111
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
國立中興大學
申請系所
土壤環境科學系
專案主持人
劉雨庭
職等/職稱
教授
專案中文名稱
開發嗜熱嗜酸深藍紅藻作為永續的被動生物修復資材:以氧化還原作用及物種轉變方式去除Cr(VI)與As(III)
中文關鍵字
深藍紅藻, 鉻, 砷, 永續, 被動生物復育
專案英文名稱
Develop thermoacidophilic Cyanidiales as a sustainable biomaterial of passive bioremediation for removal and redox Cr(VI) and As(III)
英文關鍵字
Cyanidiales、Cr(VI)、As(III)、Sustainable、passive bioremediation
執行金額
850,000元
執行期間
2022/5/1
至
2023/4/30
計畫中文摘要
本研究旨在瞭解深藍紅藻[Galdieria partita (Gp)、Cyanidioschyzon merolae (Cm) 與Cyanidium caldarium (Cc)]對於六價鉻Cr(VI)和三價砷As(III)的累積能力,並利用同步輻射研究技術進行機制的解析,包含穿隧式X 光顯微術(TXM)、X 光吸收光譜(XAS)與傅立葉紅外光線譜(FTIR)技術解析金屬累積在藻類上的影像分布、鉻型態轉變及其細胞表面之多醣體與細胞體內之蛋白質的結構轉變。實驗結果表明,深藍紅藻在不同pH 條件下對Cr(VI)和As(III)均表現出不同的累積能力趨勢。在酸性條件下,深藍紅藻對Cr(VI)的最大累積量依序為Cm (168.1 mg/g) > Cc (151.7 mg/g) > Gp (103.9 mg/g),而在中性條件下則相反,依序為Gp (93.7 mg/g) > Cc (87.7 mg/g) > Cm (73.0 mg/g)]。研究還揭示了深藍紅藻對Cr(VI)的累積機制,包括細胞表面對Cr(VI)的吸附、細胞表面多醣體對Cr(VI)產生的Cr(III)還原固定以及細胞內Cr(VI)受半胱胺酸反應產生還原成Cr(III),最終生成氫氧化鉻沉澱。對於As(III)的累積,在酸性時,深藍紅藻累積As(III)的能力為Cc (56.0 mg/g) >Cm (43.3 mg/g) > Gp (40.1 mg/g),在中性累積As(III)的能力則是有相同的趨勢Cc (56.7 mg/g) > Cm (50.2 mg/g) > Gp (40.5 mg/g),其中深藍紅藻主要通過多醣體固定和與半胱胺酸結合來降低As(III)的危害。未來將會更深入釐清不同情況下的自然水體對於深藍紅藻移除鉻與砷的影響與其機制,並針對貼近實際情況的系統進行更完善的優化試驗,以利持續推動深藍紅藻於實際場址的應用。
計畫英文摘要
In this study, we aimed to reveal the accumulation capacities of the Cyanidiales [Galdieria partita (Gp), Cyanidioschyzon merolae (Cm), and Cyanidium caldarium (Cc)] for hexavalent chromium [Cr(VI)] and trivalent arsenic [As(III)]. Synchrotron-based techniques, including transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), and Fourier-transform infrared spectroscopy (FTIR), were employed to elucidate the mechanisms involved in metal accumulation, imaging distribution on algal surfaces, chromium speciation changes, and structural alterations of extracellular polysaccharides and intracellular proteins. The experimental results revealed different accumulation trends of Cr(VI) and As(III) by the Cyanidiales under varying pH conditions. Under acidic conditions, the maximum accumulation of Cr(VI) by the Cyanidiales followed the order Cm (168.1 mg/g) > Cc (151.7 mg/g) > Gp (103.9 mg/g). In contrast, under neutral conditions, the order was reversed, with Gp (93.7 mg/g) > Cc (87.7 mg/g) > Cm (73.0 mg/g). The study also uncovered the mechanisms of Cr(VI) accumulation, including surface adsorption, polysaccharide-mediated reduction and fixation, and intracellular chromium hydroxide precipitation. Regarding As(III) accumulation, under acidic conditions, the ability of the Cyanidiales followed the order Cc (56.0 mg/g) > Cm (43.3 mg/g) > Gp (40.1 mg/g). Under neutral conditions, the trend was similar, with Cc (56.7 mg/g) > Cm (50.2 mg/g) > Gp (40.5 mg/g). The main mechanisms of As(III) accumulation by the Cyanidiales involved polysaccharide fixation and binding with cysteine residues, reducing the risk associated with As(III) exposure. Future research will delve deeper into understanding the influence and mechanisms of natural water systems on the removal of chromium and arsenic by Cyanidiales under different conditions. Further optimization experiments will be conducted to facilitate the practical application of Cyanidiales in real-world scenarios.