跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
111
專案性質
實驗性質
專案類別
模場試驗
研究主題
整治
申請機構
國立屏東科技大學
申請系所
環境工程與科學系
專案主持人
陳冠中
職等/職稱
教授
專案中文名稱
以光催化技術處理地下水中含氯有機污染物-光纖模組及綠能系統開發
中文關鍵字
光催化透水性反應牆、覆膜光纖、三氯乙烯、現地整治
專案英文名稱
Treatment of chlorinated organic pollutants in groundwater with photocatalytic technology-development of optical fiber module and green energy system
英文關鍵字
photocatalytic permeable reactive wall, coated optical fiber, trichloroethylene, in-situ remediation
執行金額
2,300,000元
執行期間
2022/3/1
至
2023/3/1
計畫中文摘要
本研究專案在前期的研究基礎成果下,已經開發至現地試驗之光纖光催化系統,本系統對受污染地下水之處理構想,係以光纖光催化系統將光源導入地下含水層,藉由類似透水性反應牆概念,設置光催化光纖集束系統,可以經由光纖內部光源照射其表面之光觸媒後產生氫氧自由基(·OH),與地下水中之含氯有機污染物反應,達到去除污染物和整治污染場址之效果。本團隊利用水中光源機,將發光位置有效延伸至地下水污染層,降低傳輸過程中的光損失。根據108-109年度以不同光觸媒種類、光源種類,以及光纖支數進行一系列試驗,結果顯示光纖光催化系統放置於污染層中進行處理,可有效去除地下水中含氯有機污染物,且模場監測知四種污染物幾乎皆達到100%去除效率。由上述之前期模場專案(108-109年度)執行結果顯示,以光纖光催化系統應用於受含氯有機物污染之地下水現地處理具有極高的可行性。 在110-111專案計畫中,本團隊於場址周邊進行多口試驗系統井之光纖光催化試驗,並搭配地下水下游之觀測井進行驗證,本試驗期間已完成開發模組化的光纖光催化設備,以便於未來進行技術推廣時,易於現地組裝使用。同時,本團隊於第二年計畫中,已完成設計適合光纖光催化系統之太陽能儲能系統,並對於太陽能聚光設備已完成初步設計評估與測試。為因應未來系統運用至較缺電之現地場址,因此透過設計組合以及考量現場設備需求,將太陽能蓄電設備進行安裝,後續也可達到節能減碳之目標。本團隊於110-111年度,目前已完成三組背景空白試驗,以及九組系統試驗。在背景空白試驗可以得知,以30 m與35 m進行被動式採樣袋收集污染物濃度結果顯示,此兩地下水位在未進行任何光纖光催化處理時,濃度趨勢顯示沒有任何變化,並且由上下游之處理井與觀測井發現,其濃度趨勢大致上都相同。另外,本研究透過光纖光催化系統在不同操作條件下,由單井驗證主要污染物之去除效率最高可達98%,而上下游比較後發現去除效率可達到59%至89%,故由單井或上下游之多井雙軌驗證數據結果皆證明,系統之處理段可有效處理地下水之污染物。本團隊於111年度持續針對系統進行更多試驗數據驗證收集,透過改質觸媒種類(N-TiO2-ZnO/CNT)與光源種類進行探討。另一方面,在光纖光催化系統處理過後,分析得到氯離子濃度提高,代表此系統於地下水污染層對含氯有機污染物產生光催化降解作用;此外,處理後地下水DOC濃度降低也說明地下水中之有機污染物受到去除,但會受到強降雨的影響,土壤中有機物質會被沖刷致使DOC濃度會產生浮動變化。最後,經初步成本效益評估本技術與其他傳統技術相比,是具有競爭力的。
計畫英文摘要
According to our previous research, this project has conducted the optical fiber photocatalytic system's field test. The design of the system is based on the concept that using optical fiber to transfer the light from its source to the underground aquifer to treat organic contaminants. The photocatalytic fiber bundle system is set up as a simulated permeable reaction barrier, generating hydroxyl radicals when the internal light of the optical fiber irradiates photocatalysts that coated on the fiber surface. Thereafter, the hydroxyl radicals react with organic pollutants in the groundwater to remove contaminants and remediate polluted sites. We have designed an underwater light source suitable for use in thicker groundwater layers. It can effectively extend the light to the groundwater pollution layer and reduce light loss. According to our study results in 2019-2020, we found that the optical fiber photocatalytic system effectively removed organic pollutants when it was placed in the polluted layer. Almost all four monitored pollutants reached 100% removal efficiency. Therefore, it can be proved that our on-site treatment of groundwater contaminated by chlorinated organic compounds is feasible using the optical fiber photocatalytic system. In the 2021-2022 project, we carried out fiber photocatalytic tests of multiple test system wells around the site, and matched with observation wells downstream of groundwater for verification. During this test period, the development and modularization has been completed. The optical fiber photocatalytic equipment is easy to assemble and use on site for future technical promotion. In the second year of the project, we had the preliminary design evaluation and testing for solar concentrating equipment., which will be tested and evaluated for feasibility in the future. In response to the future application of the system to on-site sites with less electricity, the solar energy storage equipment is installed through the design combination and consideration of on-site equipment requirements, and the goal of energy saving and carbon reduction can also be achieved in the future. We have completed three sets of background blank experiments, and nine sets of systematic experiments. From the background blank test, it can be known that the concentration of pollutants collected by passive sampling bags at 30 m and 35 m shows that there is no change in the concentration trend of these two groundwater levels without any fiber photocatalytic treatment. In addition, in this study, the fiber photocatalytic system was used to verify that the removal efficiency of major pollutants can reach up to 98% by single well under different operating conditions. After comparing the upstream and downstream, it is found that the removal efficiency can reach 59% to 89%, so it is proved that the treatment section of the system can effectively treat the pollutants in the groundwater. In this study, we will continue to verify and collect more test data for the system in 2022, and discuss the types of modified catalysts (N-TiO2-ZnO/CNT) and light sources. On the other hand, after the optical fiber photocatalytic system was processed, it was found that the chloride ion concentration increased, indicating that the system produced photocatalytic degradation of chlorine-containing organic pollutants in the groundwater pollution layer. The reduction of DOC concentration in groundwater after treatment also indicates that organic pollutants in groundwater have been removed, but it will be affected by heavy rainfall, and organic matter in soil will be washed away, resulting in fluctuations in DOC concentration. Finally, the technology is competitive with other traditional technologies based on preliminary cost-benefit evaluation. Finally, based on the preliminary cost-benefit evaluation, this technology is competitive compared to other conventional technologies.