跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
109
專案性質
實驗性質
專案類別
模場試驗
研究主題
整治
申請機構
國立屏東科技大學
申請系所
環境工程與科學系
專案主持人
陳冠中
職等/職稱
教授
專案中文名稱
以光纖光催化技術處理地下水中三氯乙烯之現地模場研究
中文關鍵字
光催化透水性反應牆、覆膜光纖、三氯乙烯、現地整治
專案英文名稱
The Use of Photocatalytic Optical Fiber Technology to Treat Groundwater Contaminated by Trichloroethylene: A Remediation Pilot Study.
英文關鍵字
photocatalytic permeable reactive wall, coated optical fiber, trichloroethylene, in-situ remediation
執行金額
1,548,000元
執行期間
2019/1/4
至
2020/11/30
計畫中文摘要
本研究試驗場址位於所在地之屏東新開寮,在先導試驗工作方面,本團隊針對地理及地形、氣候、地質與土壤、地表水系,以及模場所在地之新開寮水文地質進行調查,並針對公告污染場址之既有監測井進行資料蒐集,且進一步測量本計畫所設之兩口監測/處理井附近之地下水水位,本試驗之兩口井分別於108年06月01日(NPUST-EP305-1)與109年04月12日(NPUST-EP305-2)完井,NPUST-EP305-1(舊井)作為系統試驗井,NPUST-EP305-2(新井)作為空白試驗井,由近五年調查資料顯示,枯水期地下水流向大致為東向西流動,而豐水期地下水流向大致為東北向西南方向流動。因此,本年度在完成地下水流速流向測量後,將新井設置於舊井上游處,進行雙井驗證處理成效。 本團隊於108年度設計一套適合應用於地下水層較厚之水中光源機,可將光源有效延伸至地下水污染層,降低光損失。於108年度試驗結果可以發現,光纖光催化系統放置於污染層當中進行處理,在兩次試驗結果發現,皆可有效去除地下水中污染物,四種污染物幾乎皆達到100%去除效率。本專案於109年度方面,以不同光觸媒種類、光源種類,以及光纖支數進營一系列試驗,探討不同條件對於受含氯有機物污染之地下水去除效率探討。系統試驗結果顯示,若以單井進行去除效率驗證比較,可以得知商業化P25 TiO2在可見光的照射條件下,去除效率較差之外,其他試驗條件皆可達到將近100%之去除效率。本模場試驗為了解並驗證光纖光催化系統對於地下水污染改善成效,因此透過溶解性有機碳(DOC)與氯離子(Cl-)生成進行探討,由上述結果可以得知,試驗模場之受污染地下水DOC濃度,確實隨著系統進行而達到去除,由實驗結果可以得知,TiO2利用紫外光可有效激發,與N-TiO2相比較佳。另外,在光纖光催化系統處理過後,確實有生成氯離子,這代表此系統於地下水污染層確實進行光催化降解作用。
計畫英文摘要
The test site for this research is located in Xinkailiao, Pingtung. We conducted surveys on geography and topography, climate, geology and soil, surface water system, and the hydrogeology where the model site is located. We also collected data on the existing monitoring wells of the announced pollution site and further measured the groundwater level near the two monitoring/treatment wells set up in this project. The two wells in this test were completed on June 1, 2017 (NPUST-EP305-1)(old well) as a system test well, and on April 12, 2020 (NPUST-EP305-2)(new well), as a background well, respectively. According to the data collected by other studies, the flow direction of groundwater in the dry season is roughly east to west. In contrast, the flow direction of groundwater in the wet season is approximately northeast to southwest. Therefore, after measuring the groundwater velocity and direction this year, the NPUST-EP305-2 was installed upstream of the NPUST-EP305-1 to verify the photocatalytic system's effectiveness in the polluted site. We designed a set of underwater light sources suitable for use in thicker groundwater layers in 2019, which can effectively extend the light source to the groundwater pollution layer and reduce light loss. According to the results of the 2019’s test, it was found that the photocatalytic system placed in the pollution layer effectively removed almost all pollutants in groundwater and reached up to 100% removal efficiency. In 2020's project, a series of tests were conducted with different types of photocatalysts, light sources, and fiber counts. We explored different operating conditions and studied their effects on the removal efficiency of chlorinated organic matter in the polluted groundwater. The system test results show that the photocatalysis successfully removed chlorinated organic matter using commercial P25 TiO2 exposed to ultraviolet light and reached 100% removal rate. But it showed low removal efficiency if visible light was applied. In order to investigate and verify the effectiveness of the photocatalytic system in improving groundwater quality, concentrations of dissolved organic carbon (DOC) and chloride ions (Cl-) were monitored. Our results show that the DOC was removed after the groundwater was treated by our system. The P25 TiO2 was effectively excited by ultraviolet light and got better groundwater quality than N-TiO2 under the same light. Besides, the Cl- level increased after our photocatalytic system treated the groundwater. This implies that the system did degrade the chlorinated organic pollutants in the groundwater.