跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
109
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
朝陽科技大學
申請系所
環境工程與管理系
專案主持人
程淑芬
職等/職稱
教授
專案中文名稱
含氯有機物污染場址的化學還原-氧化 序列整治技術開發
中文關鍵字
氯烯類,還原脫氯, 多硫化鈣,低滲透性地質,整治技術
專案英文名稱
The Development of Chemical Reduction-Oxidation Sequence Remediation Technology of Chlorinated-Organics Contaminated Sites
英文關鍵字
Chlorinated-Organics, dechlorinated, polysufide, low permeability texture, remediation
執行金額
960,000元
執行期間
2020/1/1
至
2020/11/30
計畫中文摘要
化學反應速度快,反應條件較容易營造、控制。對於異質性高,低滲透性地質環境,現地化學處理容易搭配地工技術,克服低滲透性地質傳輸的問題。因此,本計畫以目前國內含氯有機物污染場址最常見的污染物四氯乙烯、三氯乙烯做為標的污染物,篩選對氯烯類污染物具有分解能力之化學還原劑、氧化劑,探討化學還原法及化學氧化法對各種污染物之分解效率,依據試驗結果,整合最佳之化學分解反應途徑,開發現地化學還原-氧化串聯整治技術。針對低滲透性地質,探討各種污染物之入滲及溶出行為,提供低滲透性土壤地下水污染整治強度與整治工法設計參考。 研究結果顯示,過錳酸鉀對四氯乙烯、三氯乙烯有最佳的去除效率,且反應速率甚快,在2個小時內幾乎可以完成。雖然在學理上,對於含氯數較高的四氯乙烯、三氯乙烯適合採用還原脫氯的方法。但本研究所選擇的二種還原劑多硫化鈣、硫代硫酸鈉其對四氯乙烯、三氯乙烯之反應分解速率皆較氧化劑過錳酸鉀慢,因此,建議可以單一採用過錳酸鉀進行氧化反應。雖然多硫化鈣對於四氯乙烯、三氯乙烯也有不錯的解能力,但其反應速率比較慢,可能需要尋找適當的催化劑,加速反應的進行。 目前對於四氯乙烯、三氯乙烯污染場址,在現地比較常應用之化學氧化劑以過硫酸鈉及過氧化氫較常使用,但從研究決對結果顯示,這兩種氧化劑對四氯乙烯、三氯乙烯之分解速率較慢。過硫酸鈉透過鐵的催化作用,雖然效率有提升,但仍不及過錳酸鉀。 過錳酸鉀與四氯乙烯、三氯乙烯反應後產生二氧化錳,一般認為在現地使用時會造成土壤孔隙的阻塞,此部分為需要克服的地方。針對低滲透地質,過錳酸鉀可透過土壤混合(soil mixing)技術,將土壤與過錳酸鉀充分攪拌,可增加接觸反應的機會,提升處理效率。但,此部分需有地工技術的搭配,未來可以透過現地試驗評估其效益。
計畫英文摘要
The chemical reaction is fast, and the reaction conditions are easier to create and control. For geological environments with high heterogeneity and low permeability, in-situ chemical treatment is easy to match geotechnical technology to overcome the problem of low permeability geological transmission. Therefore, this project uses tetrachloroethylene, trichloroethylene, and its dechlorinated derivatives, dichloroethylene and vinyl chloride as the target pollutants. Screening chemical reducing agents and oxidants that have the ability to decompose chlorinated organic compounds. Evaluate the decomposition efficiency of chemical reduction and chemical oxidation on various pollutants. Based on the test results, the best chemical decomposition reaction program is integrated. For low permeability geology, the infiltration and dissolution behavior of various pollutants are discussed. The infiltration efficiency of the remediation agent in low-permeability soil was studied. It can be used as a reference for designing the intensity and regulation of groundwater pollution in low-permeability soils. Research results show that potassium permanganate has the best removal efficiency for tetrachloroethylene and trichloroethylene, and the reaction rate is very fast, which can be almost completed within 2 hours. Although theoretically, it is suitable to adopt reductive dechlorination methods for tetrachloroethylene and trichloroethylene with higher chlorine content. However, the two reducing agents selected in this study, calcium polysulfide and sodium thiosulfate, have a slower reaction and decomposition rate for tetrachloroethylene and trichloroethylene than the oxidant potassium permanganate. Therefore, it is recommended to use potassium permanganate alone. Carry out oxidation reaction. Although calcium polysulfide also has good decomposing ability for tetrachloroethylene and trichloroethylene, its reaction rate is relatively slow, and it may be necessary to find a suitable catalyst to accelerate the reaction. At present, for sites contaminated with tetrachloroethylene and trichloroethylene, sodium peroxysulfate and hydrogen peroxide are the more commonly used chemical oxidants in the field. However, these two oxidants have slower decomposition rates for trichloroethylene and tetrachloroethylene. Although the efficiency of sodium permanganate is improved through the catalytic effect of iron, it is still not as good as potassium permanganate. Potassium permanganate reacts with tetrachloroethylene and trichloroethylene to produce manganese dioxide, which is generally believed to cause clogging of soil pores when used on site. For low-permeability geology, potassium permanganate can be thoroughly mixed with the soil through soil mixing technology, which can increase the chance of contact reaction and improve the treatment efficiency. However, this part needs to be matched with geotechnical technology, and its benefits can be evaluated through field trials in the future.