跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
108
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
國立屏東科技大學
申請系所
環境工程與科學系
專案主持人
趙浩然
職等/職稱
教授
專案中文名稱
結合電化學氧處理與現地即時分析技術於油品污染場址整治之可行性評估
中文關鍵字
秀麗線蟲,綜合細胞毒性分析,致癌毒性分析,發炎反應分析
專案英文名稱
Feasibility study on electrochemical oxidation and real-time monitoring technique for the remediation of oil-contaminated groundwater
英文關鍵字
Caenorhabditis elegans,Cytotoxicity ATP bioassay,P53 bioassay,NFκB bioassay
執行金額
700,000元
執行期間
2019/1/1
至
2019/12/31
計畫中文摘要
電化學高級氧化法(electrochemical advanced oxidation process)為高級氧化技術(advanced oxidation processes, AOPs)的一種,他具有高效節能、操作簡單、環保及設備簡單,其中又以BDD (boron-doped diamond)電極做為陽極對於污染物之去除效率較高,相較於其它材料具有低成本與較高之污染物礦化效率等優點。本研究以國外BDD摻硼鑽石電極降解位於高雄市某加油站、高雄某化工廠及澎湖某化工廠其皆受總石油碳氫化合物污染且曾被檢測苯類污染物超標之地下水中的污染物,本研究已採集19件次苯類污染之地下水樣本。研究結果顯示,經電化學處理後之BTEX分析,第一季水樣僅MTBE (甲基第三丁基醚)、toluenev(甲苯)及m,p-xylene (m,p -二甲苯)被檢測出,但其濃度均符合地下水污染物管制標準。第二季水樣僅在Benzene (苯)、Toluene(甲苯)及Chiorbenzene (氯苯)被檢測到,其化合物濃度均符合地下水污染物管制標準。第三季及第四季水樣其污染物幾乎皆被檢測出,其在電化學降解處理後,去除效率大多為100%,其餘未降至ND之化合物濃度均符合地下水污染物管制標準第二類。其中GW-377-1-S2-1經電化學試驗後之結果顯示,其水樣在總有機碳(TOC)降解的部份濃度從85.2 mg/L降至1.3 mg/L(去除效率達98%)。經電化學氧化降解4小時,第一季水樣SV02的TOC降解從24.8 mg/L 降至3.3 mg/L,有最佳的去除效率(86.6%)。第二季水樣的TOC降解,則以SV01-S2從19.2 mg/L 降至1.5 mg/L,有最佳的去除效率(92.3%)。比較TOC降解效能,發現較佳電極間距 為0.2 cm、添加電解質有助於降低系統電位、且添加H2SO4電解質較添加Na2SO4電解質為佳(TOC去除效率 = 87%~98%),當混合H2SO4及Na2SO4為電解質時(以0.0025 M H2SO4+0.0025 M Na2SO4較佳),TOC的去除效率為89%~97%。 本研究除了進行傳統化學分析,另同步使用即時分析系統MiTAP-UTLD分析地下水水樣。惟分析結果顯示,Toluene於兩種化學分析方法中具有顯著相關性。進一步使用三種生物毒性篩測平台 (綜合細胞毒性分析(Cytotoxic ATP bioassay)、致癌毒性分析(P53 bioassay)與發炎反應生物偵測法(NF-κB bioassay)),研究發現經電化學實驗後,細胞存活率皆有之提高趨勢,顯示出BDD電極用於處理污染之地下水有機污染物具有良好之潛力,且此整治方法可顯著改善受污染地下水對人體毒性影響。
計畫英文摘要
Electrochemical oxidation process is one of the advanced oxidation processes (AOPs) for contaminant remediation wherein anode material production technique is the main technology applied. Boron-doped diamond (BDD) anode has advantages such as low cost and high mineralization efficiency of contaminants, compared with other materials. The aim of this study is to use locally produced and commercial BDD anode material to remediate groundwater contaminated phenyl compounds. Nineteen samples were collected from phenyl compounds in the groundwater in south Taiwan. The research showed that only MTBE, Toluene, and m,p-xylene were detected in season one, and Benzene, Toluene, Chlorbenzene were detected in season two. The remaining phenyl levels of contaminants were lower than the standard values. In season 3 and 4, after electrochemical oxidation treatment, most of the compounds exhibited a removal efficiency of 100%. The results of electrochemical tests of GW-377-1-S2-1 showed that the concentration of water in the total organic carbon (TOC) degradation decreased from 85.2 mg/L to 1.3 mg/L (removal efficiency reached 98%). After 4 hours of electrochemical oxidation degradation, the TOC degradation of the first season water sample, SV02, decreased from 24.8 mg / L to 3.3 mg / L, with the best removal efficiency (86.6%), while the TOC degradation of the second season water sample, SV01-S2, decreased from 19.2 mg/L to 1.5 mg/L, which had the best removal efficiency (92.3%). Upon comparison of the degradation efficiency of TOC, it is found out that the preferred electrode spacing is 0.2 cm. The electrolyte added helped in reducing the system potential, and it was shown that using H2SO4 electrolyte led to a better result than using Na2SO4. In addition to traditional chemical analysis, this study uses the real-time analysis system MiTAP-UTLD to analyze groundwater samples. However, the analysis showed that Toluene has a significant correlation between the two chemical analysis methods. Furthermore, through the use of different bioassay procedures, the study found that after electrochemical experiments the cell viability has increased, showing that BDD electrodes have good potential for treating contaminated groundwater organic pollutants and this remediation method can be significantly improved.