跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
107
專案性質
實驗性質
專案類別
模場試驗
研究主題
整治
申請機構
國立高雄師範大學
申請系所
生物科技系(所)
專案主持人
陳士賢
職等/職稱
教授
專案中文名稱
以超高溶氧奈米氣泡水強化現地生物整治技術試驗計畫
中文關鍵字
超高溶氧奈米氣泡水,現地生物復育技術,石化污染場址
專案英文名稱
Field Study of Enhanced Bioremediation by Injection of Water Saturated with Nano – scale Oxygen Bubbles
英文關鍵字
Nano – scale Oxygen Bubbles,Enhanced Bioremediation,PetroChemical Contaminated Site
執行金額
1,770,000元
執行期間
2018/1/10
至
2018/11/30
計畫中文摘要
本研究目的為開發一新穎現地好氧生物整治技術,應用奈米氣泡顆粒小、持續時間較長的特性,利用水力控制使氣泡通過微小的土壤間隙,抵達細氣泡難以抵達的土壤間隙中,使微生物可獲得氧氣,透過奈米氣泡配合抽、注井場,提升地下水中的溶氧,刺激地下環境中的微生物在好氧環境下分解油品類污染物,另一方面,也突破目前氣提法(air sparging)中曝氣影響半徑不足的問題,最終則是開發出一新穎之本土化的石化場址現地生物整治技術。本研究主要分為實驗室試驗以及污染場址模場試驗等二個部份,實驗室試驗主要區分為管柱與砂箱試驗等2個部份以收集實場操作之參數,管柱及砂箱試驗乃是參考場址環境特性,填充土壤,建立相似之地質條件、孔隙度與污染情況,並模擬地下水流場與抽注井場情況建立流場,透過觀察奈米氣泡水的傳輸情況,了解高濃度溶氧停滯及消散之情形,同時建立系統操作參數基線資訊、監測技術與方法。模場試驗則是選取高雄市大社工業區中的石化污染場址進行技術試驗,應用砂箱試驗階段所建立之參數與監測方法,設計抽、注井場與循環井場,利用模場試驗方法,建立與發展超高濃度溶氧奈米泡水現地生物整治技術的操作參數與方法,開發一完整之新穎整治技術,提升我國土壤及地下水污染整治技術水平。 管柱實驗顯示飽和溶氧水滯留時間經24 hr至72 hr,其溶氧量損失約1.0 mg/L,而經滯留時間96 hr與120 hr,其溶氧量損失分別約1.98 mg/L與1.90 mg/L,相對而言垂直管柱之溶氧變化較為和緩,歷經120小時後溶氧約下降1.39 mg/L,故推測垂直狀態下之溶氧較不易消散。進行測試高濃度氣體溶解裝置循環製造高濃度溶氧水,藉由100公升水箱(80 cm60 cm21 cm)測試溶氧升高能力,測試製造時間分別以5、10、15、20、30與60分鐘來觀察溶氧濃度變化,本試驗高溶氧水之製程時間經選擇為30分鐘,溶氧濃度大於40.9 mg/L方進行管柱、砂箱試驗及高溶氧水於開放狀態與密閉狀態條件之衰變試驗 奈米氣泡高溶氧水在開放與密閉的溶氧量皆維持在一定濃度,長期觀察20天溶氧無顯著差異。奈米氣泡高溶氧水之水平管柱實驗顯示,注入水經滯留時間24小時後所偵測到的溶氧值為10.8 mg/L,注水後之二十四小時溶氧劇烈減少,從27 mg/L降至10 mg/L,但此後溶氧減少就趨於和緩,滯留時間96小時後所偵測到的溶氧值為9.24 mg/L,歷經120小時高溶氧水仍能維持原溶氧之80%以上。高溶氧水在垂直管柱中傳輸亦會造成溶氧損失,注入水經滯留時間24 hr後所偵測到的溶氧值為9.38 mg/L,在前二十四小時溶氧劇烈減少,從27 mg/L降至9 mg/L,但此後溶氧減少就趨於和緩,滯留時間120 hr後所偵測的溶氧值8.54 mg/L,仍是高於常溫飽和溶氧水。 以長60公分、寬51公分、高65公分之砂箱進行傳輸試驗,砂箱每15公分處放入一支篩管,各篩管在第一天其溶氧降低最多,在96小時後,溶氧僅剩原始之40%,第四天至第十六天其溶氧減少呈現趨緩,且從距離對應天數來看,不同距離之溶氧量消散速度不同。 本計畫之裝置、監測井及注水井於2018年8月均已建置完並且完成試車,而於2018年9月7日進行土壤及地下水採樣並建立該模場之基線資料,欲了解之基線資料包含該模場之污染濃度、酸鹼值、總氮、總磷及菌相分析。土壤採樣點位編號分別為S1、S2及S3,每個樣點採樣深度為4至6公尺,每50公分為一單位。首先土壤之酸鹼值約為6.54-7.72,平均7.40,土壤酸鹼值為中性;氨氮約為0.018%-0.027%,平均為0.015%;磷約為241-444 mg/kg,平均為390 mg/kg。 地下水採樣點位編號分別為GW1、GW2、GW3、MW1及MW2,檢測之項目包含點位井深、水位、溫度、酸鹼值、溶氧(Dissolved Oxygen, DO)、氧化還原電位(Oxiation – Reduction Potential, ORP)、導電度(Electrical Conductivity, EC)、氨氮、硝酸鹽氮、亞硝酸鹽氮及磷酸鹽等11個檢測項目。 本場址之地下水水位為2.07-2.33米,而溫度、酸鹼值及溶氧均差異不大,應為同一區域之水源,故其數值較為相近,ORP之檢測中,正值即為氧化,反之數值為負則為還原,檢測數據則為 -2.30-84.4 mV,EC之測值則為435 µs/cm。 模場試驗於2018年10月8日開始進行高溶氧水注入試驗,此階段分為三個月進行,第一個月每日注水8小時,第二個月每日注水12小時,第三個月為24小時不間斷注水,在此一階段為測試何種操作參數適合用於本場址中,並且能夠使用最少之氧氣以達到最節能並且能最有效之結果。於10月8日後亦有密集進行檢測水質之資訊,其MW1溶氧由一開始1.11 mg/L上升至9.21 mg/L,溶氧有明顯上升趨勢,而MW2則由1.08 mg/L上升至2.01 mg/L,上升趨勢不如MW1,因本場址之地下水流向為東南向西北流,而MW1位於GW1西北方約30公分處,而MW2位於GW1西北方約1公尺處,推測因傳輸距離較遠而使溶氧在傳輸過程中造成一定之消散。 後續工作將完成第一階段之規劃,第一個月灌注頻率為每日8個小時,日灌注量為2.4公噸的高溶氧水,其灌注時間為9時至17時;第二個月每日灌注12小時;第三個月每日灌注24小時,確認何種灌注高溶氧水之頻率及水量對提高地下水中溶氧量為最佳操作參數,於往後模場試驗使用該操作參數進行後續之實驗。 本計畫預計於2019年5月至2019年7月進行油品分解菌添加測試,測試所添加之菌種是否能加速降解該場址地下環境中之污染物。2019年8月至2019年9月進行三口注入口及一口抽水井高溶氧水傳輸試驗。2019年10月至2019年11月以8月至9月條件進行石化分解菌添加測試。
計畫英文摘要
Microbubble (MBs) and nanobubble (NBs) technologies have drawn great attention due to their wide applications in water treatment, biomedical engineering, and nanomaterials in recent years. In particular, the focuses were on degradation of toxic compounds, water disinfection, and cleaning/defouling of solid surfaces including membrane from environmental aspects. The main purpose of water pretreatment is to reduce biological, chemical and physical loads in order to reduce the running costs and increase the treated water quality. In this context, air MBs/NBs as a pretreatment means has been shown to be highly beneficial for downsizing the water/wastewater treatment plants and improving the quality of product water. Use of oxygen NBs has been anticipated due to their extremely high bioactivity and mass transfer efficiency. It is reasonable to consider that NBs would have great potential implication in soil and groundwater remediation. Hence, the objective of this study is to develop the use of NBs in petroleum hydrocarbon contaminated site to enhance bioremediation. Laboratory experiments were conducted to investigate flow of discrete microbubbles through a water-saturated porous medium by column and sand box experiments in this study. NBs was release from a diffuser, move upward through a column filled with packed soil. Outflowing bubbles were collected for flux measurements. The scaling behaviors between the gas (bubble) release rates and various characteristic parameters of the bubble plume, including plume tip velocity, plume width, and breakthrough time of the plume front will be quantified. The experiments also revealed circulations of ambient pore water induced by the bubble flow. The results of column experiments indicated that loss of dissolved oxygen (DO) in air-saturated water was about 1 mg/L after 72 hours. After 120 hour of retention time in the packed column, DO loss in air-saturated water was about 1.90 mg/L. Vertical columns tended to retain oxygen for longer time than horizontal one. Dissolved oxygen was measured to be 40.9 mg/L after nano-scale oxygen bubble was produced for 30 min. Longer exposure time did not significantly increase the level of DO. DO depletion was not observed in either open or closed system after 20 days when dissolved oxygen level in the water was raised by nano scale bubble. Dramatic depletion of DO from 27 mg/L to 10 mg/L was observed in the first 24 hours of the column experiment. After the time period, the depletion was slow down. After 120 hours, DO was maintained higher than saturated water of room temperature. Forty percent of DO depletion was observed after 96 hours in the sand box experiment. However, the depletion was slower between 4 to 16 days. Field study was conducted s from August 2018. Test cells was designed and employed in one of the petroleum hydrocarbon contaminated site in Kaohsiung. Injection of NBs was conducted in the test zone with three injection wells and two monitoring wells. Injection of high DO water was designed to be 8 hours per day in the first month. It will be increased to 12 hours per day in the second months. Finally it will be continuous injection. Monitoring of pH, dissolved oxygen, nutrients and change of population/diversity of microorganisms was performed. Retention time of NBs, concentration of dissolved oxygen, and change of petroleum degrading bacteria including degradation enzyme will be observed on a fixed period of time. It is anticipated that functions of enhanced bioremediation can be achieved through injection and circulation of NBs by field practices. The application of NBs in assisting enhanced bioremediation will be explored. Feasibility, performance and cost analysis will be assessed in this study. This study will serve as a leading project for future investigations to employ nanobubbles in the field of soil and groundwater remediation.