跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
107
專案性質
實驗性質
專案類別
模場試驗
研究主題
整治
申請機構
國立中央大學
申請系所
生命科學系
專案主持人
陳師慶
職等/職稱
教授
專案中文名稱
應用產氫菌提升產氫量以加強含氯有機污染物還原脫氯效率:現地模場試驗
中文關鍵字
氯乙烯,生物強化,產氫菌,脫氯菌,菌株固定化
專案英文名稱
Application of hydrogen-producing bacteria to enhance reductive dechlorination efficiency of chlorine ethene : field test
英文關鍵字
Vinyl chloride,Bioaugmentation, hydrogen-producing bacteria,dechlorination bacteria,immobilizatio
執行金額
970,000元
執行期間
2018/1/10
至
2018/11/30
計畫中文摘要
含氯有機物因其特性為比水重之非水相液體(dense non-aqueous phase liquid, DNAPL),進入地下環境後,因其低黏滯性使其可在地表下快速移動,低表面張力使其容易穿入土壤小孔隙或岩石裂隙,造成整治困難度高。生物整治法被喻為自然、環保及節能的處理技術,也是目前環境污染整治的趨勢。在厭氧環境,已被證實一種脫氯菌 (Dehalococcoides)可以完全還原VC至乙烯,但脫氯作用需要氫氣作為電子提供者,降解初期氫氣含量仍充足,因此脫氯作用速率較為快速,但至降解後期氫氣逐漸消耗殆盡使脫率速率降低,研究期末報告部分自現地地下水中篩選出產氫菌株,批次試驗結果顯示於現地地下水添加產氫菌株可提高脫氯菌群與脫氯相關基因數量,增強現地菌株三氯乙烯還原脫氯降解效率。研究期末包告之部分,固定化產氫菌可以於第3-5天將氫氣表現出來,微型實驗之三氯乙烯 (TCE)濃度各組別處理後第三天開始降解,其中以固定化產氫菌之降解速率最快。各組別皆有測得cisDCE及1,1-DCE,其中以固定化產氫菌所產出之量為最多。VC及乙烯僅有固定化產氫菌組別有產出,固定化產氫菌可以使得脫氯反應完全降解至乙烯,並且有效提升Dehalococcoides菌量。經由菌相分析,固定化產氫菌主要提升Propionispora hippei、Aeromonas hydrophila、Desulfovibrio spp.等菌種,與TCE降解息息相關。本計畫成功利用固定化產氫菌達成現地地下水實驗室模組試驗,經過添加固定化產氫菌則可以提升脫氯反應提前進行,進而增強降解多氯乙烯達成完全降解至乙烯之功效。 關鍵字: 氯乙烯、生物強化、產氫菌、脫氯菌、菌株固定化
計畫英文摘要
Chlorine-containing organic matter is dense non-aqueous phase liquid (DNAPL) because of its characteristics, and enters the underground environment. DNAPL has low viscosity, it can move rapidly under the surface. It is easy to penetrate into small pores or cracks in the soil, resulting in high difficulty in remediation. The bioremediation method has been hailed as a natural, environmental, and energy-saving treatment technology, and it is also a current trend of environmental pollution remediation. In an anaerobic environment, it has been confirmed that Dehalococcoides spp. can completely reduce VC to ethylene, but Dechlorination spp. requires hydrogen as an electron supplier. The hydrogen content is still sufficient in the initial stage of degradation, so the rate of dechlorination is relatively fast, but at the end of the degradation stage, hydrogen is gradually depleted and the rate of depletion is reduced. In the present study period, hydrogen production strains were screened out from the groundwater. The results of the batch test showed that the addition of hydrogen-producing strains in the groundwater can improve the dechlorination genes and the other genes related to dechlorination. The quantity has enhanced the efficiency of reducing and dechlorinating degradation of trichlorethylene in the local strain. At the end of the study period, the immobilized hydrogen-producing bacteria can express hydrogen on the 3-5th day, and the micro-tested trichloroethylene (TCE) concentration begins to degrade on the third day after treatment. Hydrogen bacteria have the fastest degradation rate. cisDCE and 1,1-DCE were measured in each group, and the amount produced by immobilized hydrogen-producing bacteria was the most. VC and ethylene have only produced in the immobilized hydrogen-producing bacteria group. The immobilized hydrogen-producing bacteria can completely degrade the dechlorination reaction to ethene and effectively increase the amount of Dehalococcoides. Through the analysis of the bacteria phase, the immobilized hydrogen-producing bacteria mainly promoted the species such as Propionispora hippei, Aeromonas hydrophila, Desulfovibrio spp., and were closely related to the degradation of TCE. The project successfully used the immobilized hydrogen-producing bacteria to achieve the groundwater laboratory module test. After adding the immobilized hydrogen-producing bacteria, the dechlorination reaction can be promoted in advance, thereby enhancing the degradation of polyvinyl chloride to achieve complete degradation to ethylene. Keywords: Vinyl chloride, Bioaugmentation, Hydrogen producing bacteria, Dechlorination bacteria, Immobilized