跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
107
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
國立台灣大學
申請系所
環境工程學研究所
專案主持人
林逸彬
職等/職稱
副教授
專案中文名稱
以氧化銅活化過二硫酸鹽降解氯酚類有機污染物:透水性反應牆模組試驗
中文關鍵字
過二硫酸鹽, 氧化銅, 非自由基, 透水性反應牆
專案英文名稱
Degradation of chlorinated phenolic organic pollutants by CuO-activated peroxydisulfate:permeable reactive barriers module test
英文關鍵字
Peroxydisulfate,CuO, Non-radical,permeable reactive barriers
執行金額
967,319元
執行期間
2018/1/10
至
2018/11/30
計畫中文摘要
有效整治受有機物污染之土壤及地下水為建立永續水資源之重要議題。透水性反應牆(Permeable reactive barrier,PRB)為常見的現地處理方法,目前被廣泛應用於土壤及地下水污染整治上,其概念是在垂直於受污染之地下水水流流動的下游方向,架設一道可透水性的牆面,利用水流梯度形成一個被動式處理系統,污染物隨著水流流經透水性牆面進行反應,使污染物在此期間有效被降解,流出反應牆之地下水即為整治後之乾淨地下水。相對於其他整治方法,具有成本相對便宜、允許同時處理多個污染團的能力、不會出現跨媒介污染、避免處理和損失大量地下水的優點。 本研究使用氧化銅(CuO)作為反應牆介質材料架設一個反應模組,添加過二硫酸鹽做為氧化劑,降解氯酚類有機污染物,氧化銅活化過二硫酸鹽降解有機物是一個非自由基降解的氧化方法,此非自由基機制可以避免當水中存在鹵素離子與天然有機物時,產生更具毒性的副產物,亦可針對具有容易被氧化特性的有機污染物進行處理,氧化銅做為電子傳遞的媒介,表面結構不受反應影響,可以減少材料更換成本。研究結果顯示,在8個月的實驗操作期間,透水性反應牆模組仍維持良好的狀況。在以實驗室合成水樣為基質的不同水流流量(1.8-14.4 mL/min)和不同初始有機物濃度(2-40 M)條件下,經由反應模組處理後,三種目標污染物2,4-二氯酚、2,4,6-氯酚及五氯酚分別可達到92%、99% 及99% 以上之去除效率。在以真實地下水為基質的實驗條件下,三種目標污染物的降解效率皆有下降的趨勢,但對2,4-二氯酚及2,4,6-氯酚仍可達到90%及85%,五氯酚的影響較顯著,去除僅達20%,且可能由石英砂吸附現象造成,經由控制實驗發現地下水中之碳酸氫根是影響反應效率的重要因素。
計畫英文摘要
Remediation of groundwater contaminated by organic pollutants is a key component to develop a sustainable water supply. Permeable reactive barrier (PRB) is a common technology for in-situ treatment that has been widely considered in field practices. The design of PBR is to establish a permeable wall downstream of the groundwater flow, allowing contaminated groundwater passing through via hydraulic gradient and contaminants degraded by redox reactions at the water-mineral interface. Compared with other remediation technologies, advantages of PRB include relatively low cost, simultaneous treatments of multiple contaminants, and elimination of cross-contamination. In this study, a PRB system consisting of copper oxide (CuO) as the reactive media and peroxydisulfate as the oxidant was tested for the degradation of chlorinated phenols. The mechanism of this process has been verified to be a non-radical oxidation process, preventing the potential formation of more toxic by-products in the presence of halide ions and natural organic matter. As CuO only acts as an electron conductor, a long service time with minimal material replacement costs is expected. Our experimental results indicated that PRB module still maintained a good performance after 8 months of operation. The removal of three target compounds, namely 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol reached 92%, 99% and 99% in synthetic solutions under different flow velocities (1.8-14.4 mL/min ) and initial chlorophenol concentrations (2-40 M ). In experiments using real groundwater spiked with chlophenols, the removal efficiencies of all three target compounds reduced. For 2,4-dichlorophenol, 2,4,6-trichlorophenol, the removal efficiencies were 90% and 85%, respectively. For pentachlorophenol, the removal efficiency dropped to 20%, which could be possibly attributed to SiO2 adsorption. It was found that the reduced removal in real groundwater could be due to the presence of higher bicarbonate (HCO3-) concentrations.