跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
100
專案性質
實驗性質
專案類別
模場試驗
研究主題
整治
申請機構
國立高雄師範大學
申請系所
生物科技系
專案主持人
陳士賢
職等/職稱
教授
專案中文名稱
屏東縣九如鄉九清段1340地號生物整治現地試驗
中文關鍵字
生物復育、植生復育、石化污染、重金屬污染
專案英文名稱
Bioremediation study of petroleum hydrocarbon and metal contaminated site in Pingtung County
英文關鍵字
bioremediation;phytoremediation;petroleum hydrocarbon contamination;metal contamination
執行金額
執行期間
2011/11/26
至
2012/11/25
計畫中文摘要
本計畫場址位於屏東縣九如鄉大坵村,地號為九清段 1340 地號,總面積 27,550 平方公尺,公告整治場址範圍為 1,800 平方公尺。污染行為人於該場址從事廢機油提煉 與回收處理作業,作業場所露天堆置數拾個 50 加侖的鐵桶,且因無污染防護措施,以 致廢原料油或提煉製程之廢液因溢漏、漫流或任意倒置而殘留於場址土地上,檢測結 果顯示,銅、鉻、鋅、鎳及總石油碳氫化合物(TPH)超過土壤污染管制標準,環保 局於 98 年 6 月 1 日公告屏東縣九如鄉九清段 1340 地號為土壤污染控制場址,場址面積 為 27,550 平方公尺,綜上所述,本計畫之試驗土地為公告之土壤污染整治場址,土壤 已受鉻、鋅及總石油碳氫化合物之污染。 本計畫之主要目的與重要性為: 1、整治污染場址:期盼以現地試驗改善並整治重金屬及石油碳氫化合物污染,未來再 循法律或其他途徑向污染行為人追索所發生之費用。 2、作為公有地整治表率:本計畫之執行將有政府整治污染場址(公有地)之表率與宣示 效果。 3、避免持續污染地下水:本計畫之執行將可避免TPH之持續傳輸而進一步污染屏東九 如地區地下水。 4、現地生物復育(Bioremediation)試驗之應用,應用蚯蚓及微生物分解石化污染物。 5、植生復育(Phytoremediation)之現場應用:除生物復育外,亦將搭配植生復育法, 其結果將可做為此工法現地應用之參考,使我國之土壤與地下水污染整治技術增加 另一選項。 本計畫之試驗內容包括範圍界定與圈界、現場清理、土壤污染範圍及理化性質調 查、整地及土壤理化性質調整、生物復育試驗施作、植生復育試驗施作等,高污染潛 勢區樣品分析結果顯示,表層土壤重金屬鋅、鉻、鎳、銅及 TPH(C10~C40)濃度超過 土壤污染管制標準,受污染土壤深度約達地表下 1 公尺。其中重金屬污染以鋅最嚴重 達 52,167 mg/kg,石油碳氫化合物污染亦非常嚴重,TPH 高達 136,753 mg/kg,顯示過 去操作廢油回收及提煉造成表層土壤之嚴重污染,由土壤樣品不同深度之層析圖譜研 判,污染場址土壤樣品之層析圖譜顯示石化產品典型之直鏈烷及支鏈烷模式,與環保 局所提供之背景資料相符。在清理完成後,進行整地與土壤理化性質調整。其方法係 以挖土機進行翻土、破碎與整平,耕犁深度約為 60 cm。本計畫以公告污染場址為範圍,依據歷次調查結果及本計畫執行初期整地時所發 現之廢油桶堆置及掩埋區,規劃六個試驗區,其中 CK 代表無污染之對照區(Control), 其餘五區為處理區,其中 BP1、BP2 及 BP3 代表同時進行生物與植生復育之試驗區 (Bio-phytoremediation),而 PR1 與 PR2 則為進行植生復育(Phytoremediation)之試驗區, 有關本計畫之具體成果為下列各項: 一、生物復育試驗施作 進行蚯蚓分解污染土壤研究,採用紅蚯蚓(Eisenia fetida)復育土壤石化污染物,依 據污染物範圍及濃度,在污染場址劃分不同區塊(BP1、BP2、BP3),每一區塊施放約 5.4 公斤蚯蚓,於 5 月 15 日及 9 月 7 日施放兩次,石化分解菌在實驗室大量培養後,配 合實驗施作的區隔於 8 月 13 日施灑,施灑菌種為 Pseudomonas sp. NKNU01。 規劃定期土壤採樣及分析,偵側土壤之 TPH 濃度之採樣天數分別為第 7、15、30、 60、90、及 150 天,以評估生物復育成效。三個生物復育樣區(BP1、BP2、BP3)之 TPH 濃度隨著時間變化,在歷經五個月後均呈現降低趨勢,於監測結果發現 BP1 及 BP2 樣區,不同深度 TPH 有明顯移除效果,TPH 減量可達 41%至大於 99%,BP2 樣區 中移除效果明顯,不同深度土壤多數已低於土壤污染管制標準。在 BP3 高污染樣區, TPH 減量為 29%至 96%,整體而言 TPH 下降百分比較 BP1 及 BP2 樣區為低,可能原 因為高污染區不利於生物生長,甚至由於油污染氣味造成蚯蚓竄逃,導致生物量減少 影響移除效果。 二、植生復育試驗施作 本計畫依白楊樹生長所需之伸展空間及現場機具作業之需求,以間距 2.5 m 於場地 內栽種白楊樹,總計 350 顆。而場內各試驗區之植株數量分別為 CK 25 棵,BP1 及 BP2 各 12 棵,BP3 為 10 棵,PR1 為 9 棵,PR2 為 18 棵。此外,太陽麻栽植係於六個 試驗區內進行。由於種子撒播後之萌芽率不一,故單位面積之植株數亦不盡相同,惟 平均數約為每平方公尺 150 棵。完成白楊樹與太陽麻之栽植後定期土壤及植體採樣及 分析,評估對重金屬減量之成效。白楊樹由栽植日起至第四次調查日(十月中旬)共 約四個月,其成長率達 55~213%,但在高污染區 BP-3 白楊樹成長率較低,整體而言 在本試驗中白楊樹為生長快速之植物,加以其對污染物之吸收累積效果,未來將可藉 由定期修剪與移除植體而達到改善污染之目的。 植生復育各區太陽麻植栽狀況,無論是株高或乾濕重都以 CK 區最高,而在五個處 理區中,重金屬濃度最高之 PR1 及 PR2,其測值呈現較低之現象,與白楊樹之趨勢相同,可見污染物對兩種植物之發育皆有抑制之可能,值得持續觀察。 在栽種初期各區之重金屬含量差異不大,而第二次分析值則發現,污染量最高之 鋅,在各試驗區植體中有明顯之吸收累積量,Ni 次之,再其次為 Cu 與 Cr。至於太陽 麻根之含量大於地上部,而且與白楊樹之結果相似,鋅在地上部之吸收累積量最大, 鎳次之。本場址之主要污染物為 Zn、Cu、Cr、Ni,而植株之分析結果顯示,白楊樹與 太陽麻之重金屬含量依序為 Zn>Cu>Ni>Cr。 總結言之,雖然各區白楊樹與太陽麻之發育略有差異,但兩種植物皆可於試驗區 中生存與生長,顯示兩者對於本場址之污染物皆有相當之耐受性與適應性,有益於後 續之污染物改善效果試驗。 由本計畫之推動除整治污染場址,逐步降低重金屬與石化污染物含量,為解除管 制奠基,同時藉公有地之整治行動,發揮政府整治污染場址之表率與宣示效果。就污 染場址整治技術而言,將蚯蚓與分解菌之生物復育試驗成果應用於現場,可檢視兩者 間之異同。藉由生理調查及植體分析,可比較試驗樹種之除污功能,做為其他污染場 址引用植生復育之參考。同時將生物復育與植生復育結合,發揮相輔相成功效,未來 可提供一個高效率之複合整治技術。評估生物復育與植生復育試驗成果,提供我國土 壤與地下水污染整治技術一個價廉、經濟、實用與有效的方法。
計畫英文摘要
Assessing soil and groundwater contamination and developing appropriate cleanup goals is a complex task. In particular, handling both petroleum hydrocarbons and metal contamination in the subsurface environment is very challenging. The contaminated site proposed in this study is located in Pingtung County with the area of 1,800 m 2 . The site was originally used for waste oil recycling practice. During the long-term operation of waste oil refine and recycle, the site was contaminated by spilled waste oil. The major contaminants were in soil found to be chromium, zinc and total petroleum hydrocarbon (TPH) by previous investigation. Groundwater did not illustrate high level of contaminants. Given the liability of county government to deal with this public owned land, remediation action is required to prevent potential groundwater contamination. The objective of this research project is to conduct remediation in the contaminated site. Specifically, the objectives are to: (1) conduct remediation of metal and TPH-contaminated soil, (2) to establish the pattern of site remediation administrated by local government agency, (3) to prevent potential groundwater contamination, and (4) conduct in-situ bioremediation and phytoremediation. Land cleaning was performed prior to any remediation task. Several barrels of waste oil were found on site. Characterization of chemical and physical properties of soil was performed. Analysis of soil core samples down to 1 m revealed that concentration of zinc was 52167 mg/kg and TPH was 136,753 mg/kg. Severe contamination of surface soil was found, which was consistent with the initial finding three years ago. Six experiment zones were designated. Three treatment cells (6×6m) were designed in the contaminated site in the highly contaminated area for bio-phytoremediation (i.e., BP1, BP2, and BP3). Two cells were designed for phytoremediation practice (PR1 and PR2). One control cell was used to compare the results with different remediation treatment. About 5.4 kg of earthworm was employed in BP1, BP2, and BP3 for three month interval. In the next phase, petroleum-degrading bacteria (Pseudomonas sp. NKNU01) was applied in the same cells for enhanced bioremediation. Monitoring of TPH and metals was conducted by scheduled soil sampling to evaluate removal efficiency of TPH and metals. The apparent decrease of TPH was observed in the BP1 and BP2 zones. The removal of TPH ranged from 41% to 99% after five month bioremediation practice. In particular removal of TPH in BP2 is significant that most of the samples revealed that TPH is below regulation criteria. However, removal efficiency of TPH in BP3 is less due to highly contaminated nature of the cell. The removal efficiency varied from 29 to 96% at different depth. The highly contaminated area may affect the population of earthworm or biomass. Poplars (Populus bonatii Levl.)and Sun Hemp (Crotalaria juncea L.) were utilized in the phytoremediation practice. Three hundred fifty poplars were planted in the site including six experimental cells. Metals in plant tissue and soil were analyzed to evaluate removal efficiency of contaminants. After four months, the growth rate of poplar ranged from 55 to 213%. It was observed that growth rate was lower in the highly contaminated area such as BP3. Certain inhibition was noticed. The heavy metal analysis of tissues revealed that Zn>Cu>Ni>Cr. Both species are suitable for phytoremediation. The results generated in this study will serve as a case study of green remediation and environmental decision purpose.