跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
103
專案性質
實驗性質
專案類別
研究專案
研究主題
底泥
申請機構
國立台灣大學
申請系所
生物環境系統工程學系
專案主持人
廖秀娟
職等/職稱
教授
專案中文名稱
利用細菌生物感測器快速篩測底泥及地下水現場污染物
中文關鍵字
細菌生物感測器;快速篩測;底泥;地下水;污染物
專案英文名稱
Using bacterial biosensors to rapidly detect pollutants in the sediment and groundwater
英文關鍵字
執行金額
執行期間
2013/11/25
至
2014/11/24
計畫中文摘要
國內部份河川污染嚴重,然而底泥中毒性物質之污染程度與其對生態之 影響,尚無法正確的評估,尤其是底泥中重金屬較易因環境擾動而釋出至水 域環境與地下水,甚至直接或間接影響到生態系統及人類健康。因此,開發 靈敏且降低成本之快速篩測方法是急需迫切之議題。鑑於此,本研究計畫目 的為建構一系列專一性細菌生物感測器(biosensors),用以快速篩測底泥及地 下水現場之重金屬(砷、汞與鎘)。 本研究計畫已成功建構攜帶不同報告基因(report gene)之重金屬專一性 細菌生物感測器,用以偵測重金屬砷、汞與鎘,其中所使用之報告基因包括 綠色螢光蛋白(green fluorescent protein, gfp)、lacZ 及 luxCDABE。本研究利用 基因工程技術,總計建構 7 個專一性的細菌生物感測器,其中包括:2 個針 對砷檢測的 lacZ 及 luxCDABE 生物感測器; 2 個針對鎘檢測的 lacZ 及 luxCDABE 生物感測器; 3 個針對汞檢測的 gfp, lacZ 及 luxCDABE 生物感測 器。加上之前本研究室建構的 2 個針對砷及鎘檢測的 gfp 生物感測器,總計 使用 9 個砷、汞與鎘生物感測器分析檢測環境樣品。 研究結果顯示,以 gfp 與 luxCDABE 為報告基因之細菌生物感測器對於 重金屬檢測有較低之檢測極限及較高之穩定性,可以在多重汙染物環境中偵 測特定重金屬。本研究計畫所建構之細菌生物感測器不僅培養方便並且可以 快速篩測重金屬。再者,成本分析結果顯示細菌生物感測器之檢測成本相較 於化學分析法較為便宜。 整體而言,本研究計畫證明細菌生物感測器可以適用於偵測受汙染底泥 與地下水樣品中重金屬之生物有效性(bioavailability),此資訊將有助於更準 確的風險評估,提供環保署及相關單位建立更有效的環境監測策略;雖然利 用細菌生物感測器對於環境相關汙染物檢測的實際應用性,仍須後續更深入 的研究,本研究計畫研發之細菌生物感測器對於環境相關汙染物樣品檢測具 有運用的潛力。本研究計畫希冀所建構之細菌生物感測器,有助於建立管理 政策與預警系統,以維護環境品質。
計畫英文摘要
Certain rivers in Taiwan are heavily polluted. However, the toxicity and ecological impact of pollutants in the sediment are difficult to accurately assess. In particular, heavy metals in the sediments might be released into the aquatic environment and groundwater directly or indirectly influencing ecosystem and human health. Therefore, there is urgent need to develop sensitive and inexpensive methods for rapidly detecting pollutants in the environments. Hence, the goal of this grant was to establish a set of specific bacterial biosensors to detect heavy metals (As, Hg and Cd) in the sediment and groundwater. In the present study, heavy metals-specific bacterial biosensors carrying different reporter genes (gfp, lacZ, and luxCDABE) were successfully developed to measure As, Hg, and Cd, respectively. Using genetic engineered techniques, 7 bacterial biosensors have been constructed. This includes (1) two arsenic specific biosensor carrying lacZ and luxCDABE, respectively; (2) two cadmium specific biosensor carrying lacZ and luxCDABE, respectively; and (3) three mercury specific biosensor carrying gfp, lacZ and luxCDABE, respectively. By combining our previously developed arsenic and cadmium biosensors using gfp as reporter gene, there are 9 bacterial biosensors in total for further analysis of environmental samples. Results from this project showed that luxCDABE-based and gfp-based biosensors were more-sensitive and stable to detect As, Hg, and Cd. In addition, the bacterial biosensors could be cultured easily and rapidly providing a cost-effective approach. In summary, our results demonstrated that the bacterial biosensors are useful and applicable in determining the bioavailability of heavy metals in contaminated sediment and groundwater samples. This information is important for more accurate risk assessment in which the EPA and related agencies can employ effective and inexpensive environmental monitoring approaches to assess heavy metals contamination levels as well as serve as warning system against future heavy metals pollution.