跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
103
專案性質
實驗性質
專案類別
研究專案
研究主題
整治
申請機構
國立屏東科技大學
申請系所
環境工程與科學系
專案主持人
陳冠中
職等/職稱
副教授
專案中文名稱
以新穎光催化技術處理地下水中三氯乙烯之先期研究
中文關鍵字
光催化;光纖;三氯乙烯;地下水;二氧化鈦
專案英文名稱
A preliminary study of an innovative photocatalytic technology in the treatment of groundwater containing trichloroethylene
英文關鍵字
執行金額
執行期間
2013/11/25
至
2014/11/24
計畫中文摘要
本研究以新穎光催化技術處理地下水中三氯乙烯(TCE),探討在不同操 作條件下對於處理水中 TCE 之影響。研究利用高導光特性之塑膠光纖搭配 浸鍍技術,將商業化光觸媒覆鍍於光纖表面製成覆膜光纖。研究先於水相條 件下進行測試,實驗結果發現,光纖光觸媒覆鍍次數增加會降低光催化效 率。光照強度增強以及處理時間增加皆有助於光催化效率的提升。另外,在 不同 pH 之操作條件下發現,溶液中含有較多 OH-時,較容易生成強氧化力 之氫氧自由基(・OH)。實驗進一步以對氯苯甲酸(pCBA)作為·OH 之探針 (probe)進行氫氧自由基轉換濃度(ROH,UV)分析,結果發現,在 pH10 之氫氧自 由基轉換效率最佳。實驗選用之觸媒則分析能隙與吸收波長。另一方面,系 統之光催化反應動力模式則以 L-H 模式(Langmuir-Hinshelwood model)進行 探討。 本實驗並分別使用屏科大土壤和石英砂填充之土壤管柱,進行模擬受 TCE 污染地下水之光纖光催化試驗。實驗結果顯示,含有機物之屏科土壤會 抑制光催化效率。如果使用較高光照強度之 LED 作為光源時,可以提高 ROH,UV效率。土壤管柱進行不同深度地下水取樣分析時發現,結果是以靠近 燈源處之光催化效率最佳。實驗最後以氯離子生成濃度與總有機碳去除效率 評估光催化效率,結果皆證明光催化處理程序可提升 TCE 之去除效率,其 中又以 TiO2 觸媒之光催化效率最佳。
計畫英文摘要
This study used a novel photocatalytic technology to treat trichloroethylene (TCE) in groundwater. The effect of photocatalysis of groundwater containing TCE under different operating conditions and its treatment efficiency were investigated. Plastic optical fibers coated with two commercialized photocatalysts on their surface were used in this study. The treatment of TEC in aqueous phase was conducted as the pre-test of the treatment of modeling groundwater in a soil column. The experimental results showed that the photocatalytic efficiency decreased as the number of coating of catalyst increased. Higher light intensity and treatment time resulted in higher photocatalytic efficiency. Furthermore, a great amount of hydroxul radicals (·OH) was generated at alkaline pH conditions due to the higher concentration of OHexisted in water samples. The para-chlorobenzoic acid (pCBA) was used to experimentally determine hydroxyl radical exposure per UV fluence (ROH,UV) from the photocatalytic reaction under different operating conditions. The results showed that pH10 is the optimal pH to generate hydroxyl radicals. The energy gap of two catalysts and their specific absorption wavelength were also determined. The L-H photocatalytic reaction kinetic model (Langmuir-Hinshelwood model) was applied and discussed. Soil columns containing test media (NPUST soil and quartz sand) were used in fiber optic catalysis to simulate the treatment of groundwater contaminated by TCE. Experimental data demonstrated that the NPUST soil containing organic matter inhibited the photocatalytic efficiency. The enhancement of light intensity promoted the value of ROH, UV, which indicated that the formation of hydroxyl radicals was stimulated. Three sampling ports of the soli column with different depths were used to evaluate the effective length of optical fibers. The results showed that the efficiency of photocatalysis decreased as the optical fiber far away from the light source. Finally, the concentration of chloride ions generated after photocatalysis and the TOC removal efficiency were investigated. The results showed that photocatalysis through optical fibers can effectively decrease the concentration of TCE, and optical fibers coated with TiO2 catalysts showed better photocatalytic efficiency than ZnO catalysts.