跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
109
專案性質
實驗性質
專案類別
模場試驗
研究主題
調查
申請機構
國立交通大學
申請系所
土木工程學系
專案主持人
張良正
職等/職稱
教授
專案中文名稱
新型光纖光柵高解析監測技術於深層水文地質參數異質場調查技術之發展
中文關鍵字
水文地質參數,光纖光柵感測器,非均質性,聯合反演,深層含水層
專案英文名稱
Development of a novel technology to identify the heterogeneity of deep aquifer using distributed fiber Bragg grating sensors
英文關鍵字
Hydrogeological parameters, fiber Bragg grating sensor, heterogeneity, joint inversion, deep aquifer
執行金額
2,300,000元
執行期間
2019/12/1
至
2021/11/30
計畫中文摘要
為了預測藥劑與污染團在深層含水層的移動路徑,求得高解析度的三維水文地質參數場是相當重要的,然而傳統的抽水試驗與微水試驗因為其理論假設與現地特性不符,因此無法求得真實參數異質場。因此,建立一個新技術來調查深層含水層的水文地質參數場實為刻不容緩。本研究將以本團隊於前期土基會計畫「新型光纖光柵多深度監測於水文地質與熱傳參數異質場推估技術之發展」之研究成果為基礎,發展新的深層三維參數場調查技術,此技術包含三個部分: (1)光纖光柵(FBG)系統改善: 此部分包含修改橡皮膜與感測器以適應深層含水層的水壓、加入水質感測器以直接觀測整治藥劑的移動情況,及加入注藥管以在調查階段即可利用觀測井進行水力掃描。(2)奇異值分解: 此方法將用於水力掃描演算法中,以降低現地案例分析時之大量計算量需求。(3)分布式光纖感測器(DTS): 在本計畫第二年時,此設備將用來量測高解析度的井內溫度剖面,這些觀測將用於改善水力掃描的推估結果。目前開發之感測器包含四種不同功能,除了可以依需求串接進行水壓、水溫與導電度的量測外,還可於特定深度注水。本研究已於10月12日與11月2日完成34 m深之多深度水壓、水溫與導電度現場測試,且亦同時完成注水測試。現場測試結果顯示水壓呈現明顯分層差異,在注水後水壓、溫度與導電度均呈現顯著變化,顯示系統可達到預期目標。在水力斷層掃描演算法改善部分,本研究已經完成程式開發與數值試驗,數值試驗結果顯示新演算法的穩定度與收歛性更佳,且由設計案例之分析結果可知,新演算法可已改善計算量與提升收斂速度,因此可有效減少反演的時間,提升計算效率。本研究將於下一年度完成水力掃描後,以現場試驗資料進行演算法測試分析。
計畫英文摘要
To access and predict the movement of the plume and agent in the deep aquifers, understanding the detailed hydrogeological parameters fields is essential. However, using the traditional pumping test and slug test to develop these three-dimensional parameter fields is impossible due to their unrealistic assumptions. Accordingly, developing new technology to identifying the three-dimensional hydrogeological parameter fields is urgent, and we will develop a new method based on the project results “Development of a novel technology to identify the heterogeneous hydrogeological and geothermal parameters by using multi-depths fiber Bragg grating sensors” funded by Taiwanese EPA. The newly developed technology consists of three parts: (1) Improvement of the fiber Bragg grating sensing (FBG) system: including the adjustment of the rubber packer, piezometer, and thermometer to adapt to the high groundwater pressure. Electronic water quality sensors will also be installed into the FBG system to directly observe the movement of remediation agent. To conduct hydraulic tomography (HT) using groundwater monitoring wells in the early stage of remediation, several injection tubes will be installed in the new FBG system. (2) Singular value decomposition: This method will be used to reduce HT’s computational loading for the field case study. (3) Distributed temperature sensor (DTS): In the second year, we will use DTS to measure the temperature in the wells with high spatial resolution, and the measurements will be used to improve the estimate of hydrogeological parameters from HT using head data. Currently, the developed FBG system has multiple functions, including the measurements of pressure, temperature, electrical conductivity, and liquid injection. We have examined this FBG system in the study site. This system was installed in a monitoring well to measure the groundwater pressure, temperature, electrical conductivity at the depth of 14m, 24m, and 34m. The water injection function was also tested at the depth of 34 m. The change in pressure, temperature, and electrical conductivity is significant during the stress period. This results show the FBG system is practical. For the improvement of HT, we have complete two numerical experiments, and the results indicate that the newly proposed method is more stable and convergent than the original algorithm and has an 18.4% decrease in the computation loading, and about 5 times decrease in the inversion iteration. Accordingly, the performance is much improved. In the next year, we will use the field data to examine the new method after HT is conducted in the study site.