跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
107
專案性質
實驗性質
專案類別
模場試驗
研究主題
自訂
申請機構
國立交通大學
申請系所
土木工程研究所
專案主持人
張良正
職等/職稱
教授
專案中文名稱
新型光纖光柵多深度監測於水文地質與熱傳參數異質場推估技術之發展
中文關鍵字
水文地質,熱傳參數,光纖光柵,異質場
專案英文名稱
Development of a novvel tevhnology to identify the heterogeneous hydrogeological and geothermal parameters by using multi-depths fiber Bragg grating sensors.
英文關鍵字
Hydrogeological parameters, geothermal parameters, fiber Bragg grating sensor, heterogeneity, joint
執行金額
1,861,695元
執行期間
2018/1/10
至
2018/11/30
計畫中文摘要
本研究之主要目的為透過注藥時期量測多井多深度的水位與溫度進行研究場址之三維水文地質參數場推估,以建立精準的流場,協助預測預測污染團未來可能的發展,以提供預警監測管理或建議、協助規劃更有效益的整治系統,以及掌握灌注後的整治藥劑分布情形。本年度已完成之工作項目包含(1)以FBG觀測系統觀測注藥期間在多井多深度之水溫與水壓變化(2)完成注藥期間以跨孔井下地電阻同步監測藥劑動向,以及(3)完成地下水流與熱傳耦合模式之開發與驗證。本研究目前已完成多深度光纖光柵之溫度與壓力觀測系統開發與完成現地注藥期間之多井多深度觀測,並成功地觀測到注藥期間之水壓變化,而水溫變化則相對水壓變化不明顯。另外本研究已改量感測器的材質,包含不鏽鋼316與耐酸性的膠,以增加感測器的耐腐蝕性。此次試驗跨孔井下電阻亦同步觀測到注藥過程中,地層中的電性變化。未來將可作為流場預測之依據。最後,本研究已完成地下水流與熱傳耦合模式開發,並以Tough2軟體作為參照,初步完成模式驗證。整體而言,本研究之成果符合工作進度,後續將持續進行FBG監測系統的改進,模擬模式精進,與聯合反演算方法的開發。
計畫英文摘要
The purpose of this study is to develop the accurate three-dimensional hydrogeological parameters fields based on the head and temperature measurements during the remediation agent injection periods in the selected contaminated site. The accurate flow field enables us to understand and predict the spatial distribution of the plume, provide the necessary information for the design of the monitoring well groups of the early warning system, develop the effective site remediation system, and outline the spatial distribution of the major transmission after the injection of remediating agents. The project tasks needed to be complete this year include (1) complete one field investigation of head and temperature at the multiple depths of the selected multiple wells using FBG multiple sensors during the remediation agent injection, (2) simultaneously investigation of remediation agent transmission using CHERT, and (3) validation of the developed coupled flow and heat transport simulation model. Currently, this study has completed the investigation of the head and temperature at three selected depths of the three observation wells using FBG multiple sensors during the remediation agent injection in the study site, and the head variations were clearly observed by the FBG system, but the temperature observations were relative insignificant. Furthermore, the corrosion resistance of the FBG system was improved by using the corrosion resistance glue and stainless steel 316. The results of cross-hole electrical resistivity tomography show that the remediation agent can be clearly observed, and these images will be valuable reference for the flow field prediction. In the development of the coupled flow and heat transport model, we have developed the mathematical model and used finite element method to solve it by the Fortran codes. To verify our develop model, the simulation output of Tough2 and our model were compared, and the results are consistent. Finally, the results show that all the project tasks are on schedule, and we will continue to improve the developed FBG system and simulation model as well as the development of joint inversion model.