跳到主要內容
:::
網站導覽
公告資訊
下載專區
專案緣起
成果專區
聯絡我們
常見問答
:::
首頁
成果專區
結案成果報告及摘要
專案基本資料
摘要下載
年度
104
專案性質
實驗性質
專案類別
研究專案
研究主題
調查
申請機構
國立清華大學
申請系所
生物醫學工程研究所
專案主持人
萬德輝
職等/職稱
助理教授
專案中文名稱
開發可用於現場檢測重金屬之低成本紙基快篩檢測平台
中文關鍵字
快速篩檢,重金屬檢測,奈米粒子,比色法,紙基感測器
專案英文名稱
Low-cost Paper-Based Analytical Devices for On-site Detection of Mercury(II) Ions
英文關鍵字
Repid detection, heavy metal sensors, nanoparticles, colorimetry, paper-based sensors
執行金額
1,100,000元
執行期間
2014/12/1
至
2015/11/30
計畫中文摘要
本計畫為開發現場檢測汞汙染之低成本紙基快速篩檢平台之研究,將結合紙質基材、奈米粒子,以及智慧型手機來進行地下水及底泥中含汞離子實際樣品的快速檢測。在常見的重金屬汙染中,汞離子可以經由飲用水或是透過食物鏈的方式累積在人體中,普遍認為對生物體造成相當大的毒性及危害。因此,在本計畫中,我們將利用奈米金屬粒子的表面電漿共振效應,結合比色分析法,整合智慧型手機及應用程式,進而設計出具有低成本、容易操作、攜帶方便、高靈敏度之汞離子快速檢測平台。 在期中成果報告中,我們成功利用奈米轉印技術,將單層奈米金屬粒子陣列轉印到紙質基板上,當含有汞離子的待測液接觸到奈米粒子陣列時,會立即發生置換反應,並隨著汞離子濃度的差異,造成吸收色譜的顯著變化。透過合成不同奈米粒子,包括銀奈米粒子、中空銀金粒子、中空銀殼層粒子,並探討其與汞離子反應之後的色譜變化,我們發現銀奈米粒子具有最佳的靈敏度,最低檢測濃度可達2 ppb,並對汞離子具有顯著的選擇性。 在期末成果報告中,我們透過調控製程參數、奈米粒子表面修飾及形貌,成功優化此低成本感測器,以及利用智慧型手機記錄快篩試片上之彩色光學影像,並透過應用程式快速判讀檢測結果。由反射光譜分析結果顯示,此感測器之最低檢測濃度可達1 nM (0.2 ppb);而當結合智慧型手機取得光學影像,進行色彩分析結果顯示,此感測器之最低檢測濃度可達5 nM (1 ppb);更重要的是,當濃度達10 nM (2 ppb)以上時,其顏色變化即可以用肉眼判斷之。最後,我們利用最佳化條件之快篩試片,進行實際含汞汙染之地下水試樣的半定量分析,並結合感應耦合電漿質譜分析儀來比對快篩試片之可靠性。
計畫英文摘要
The excessive number of plants constructed in Taiwan produce serious discharged toxic heavy metal ions, such as mercury ions, may ultimately accumulate in human bodies through the food chain. In this project, we will investigate the development of paper-based analytical platforms for on-site detection of mercury ions. Combining with colorimetry analysis and smartphones, the metal nanoparticles arrays are designed for novel optical chemical sensors with easy-to-use, portability, low-cost, and excellent sensitivity. Previously, we successfully fabricated the novel colorimetry paper sensors by transferring the metal nanoparticles monolayer from glass molds to paper substrates via the reversal nanoimprinting method. When mercury ions are reacted with the surfaces of the nanoparticles, they will induced a significant reduction of the absorbance peak for the silver or copper nanoparticles, which is originated from surface plasmon resonance (SPR). We monitored the change in their reflectance spectra with increasing mercury concentration and found the lowest detection concentration of 2 ppb by using silver solid nanoparticles. The sensor also displayed a good selectivity against other metal ions. Herein, we optimized the plasmonic sensors to further enhance their sensibility through modifying their particle number density, surface coating layers and morphology. After that, the spectroscopic change could be also quickly detected through a smartphone: the colorful optical images were easily recorded and their RGB values were analyzed rapidly. In our case, the limit of detection has been improved to 0.2 ppb by a spectrometer, to 1 ppb by a smartphone, and to 2 ppb by naked eyes. Finally, the plasmonic sensors were used to analyze the real samples from mercury-polluted water sources. Furthermore, inductively coupled plasma mass spectrometry (ICPMS) was utilized to examine the reliability of the colorimetric sensors.